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*
ISLAND-DISSOLUTION PHASE TRANSITION IN A CHEMISORBED LAYER

T. -M. Lu , G. -C. Wang , and M.G. Lagally~ \~~~~

‘
...,

Materials Science Center
University of Wisconsin

Madison , WI 53706

A phase transition has been observed in 0 chemi sorbed on W(l10) at

low coverages , with a transition temperature -~25O°K l ower than that observed

for saturation coverage W (l1O)p(2 x 1) - 0. This transition is interpreted

in terms of two-dimens ional dissolution of islands. A fit to lattice gas

models for both low and saturation coverage allows separate determination of

the attractive and repuls ive adatom-adatom interactions , and gives va l ues

of -0.069eV/atom and 0.15eV/atom respectively.

To be published in Physical Review Letters 15 August 1977.
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The study of phase changes in overlayers is an Important tool in

understanding the interactions that adatoms undergo)~~ Very little work

has been done on chemisorption systems, and only H/W(1OO)~
2
~ and O/W(llO)~

3
~

have been studied in any detail. This Letter reports a new phase transition

for 0/W(llO) at low coverages. We observe what we believe to be two-

dimensional dissolution of the chemisorbed islands previously identified in

thi s system~~’
4
~ As a result, we are able to determine separately attractive

and repulsive adatom-adatom interaction energies leading to the p(2 x 1)

structure.

The experiment~~ consists of measuring the superlattice beam intensities

and angular profiles in low-energy electron diffraction (LEED) from the W(ll0)

surface covered with varying amounts of oxygen . The most important feature of

this system is that the ordered overlayer forms by an island growth mechanism .

This is established by the observation that superlattice LEED beams form already

at very low coverage~~~. It implies a net attractive adatom-adatom interaction.

However , the p(2 x I) structure that is formed, shown in Fig. 1 and consisting

of doubly spaced close-packed rows parallel to <lii> directions , requires a

nearest-neighbor repulsion . Streaking of spots is not observed in the

diffraction pattern during formation of the overlayer(3~
4a
~
5I . This implies

that island formation is preferred over the formation of long rows, and

therefore that the attractive Interactions along <111> directions are about

equal in magnitude (5~
6) and considerably smaller than the nearest-neighbor

repulsion that prevents close packing.

Oxygen coverage determinations were made by establishing saturation

coverage for the p(2 x 1) structure on the basis of max imum superlatti ce beam

~ 
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intensity and using sticking coefficient rneasurements~~ to relate exposure

time to relative coverage. The temperature dependence of superlattice beams

at a given coverage was then measured for various diffraction goemetries.

In each case the data plotted on a m l  vs I graph consist of a region of

constant slope proportional to the Debye-Waller factor for thermal vibrations

in the direction of the diffraction vector, and a sudden falloff away from

thi s line . Figure 2 shows examples of this falloff (with the Debye-Waller

contribution subtracted), for a low coverage of oxygen and for the p(2 x 1)

saturation coverage. At the low coverage, the superl attice beam intensity

begins to decay at a much lower temperature. Figure 3 shows the transition

temperature I~ as a function of coverage , where Tt is chosen as the inflection

point in the curves of Fig. 2. Clearly there are two transitions , one

operative at low coverage, the other for saturation . In the intermediate-

coverage region, both transit ions are seen , the lower-coverage one becoming

weaker as the coverage increases, but remaining at the same Tt.

We have i nterpreted the low-coverage transition as the dissolution of

ordered regions , with atoms leaving the ordered regions and distributing

themselves randomly on sites in the “sea” or uncovered part of the W substrate.

To do thi s, only the attractive interaction leading to formation of ordered

regions needs to be overcome, and in that sense the transition is similar to

the sublimation of a solid or dissolution of a solute into solvent and

fundamentally different from the saturation-coverage transition , where

disordering can occur only by atoms moving into the more strongly repulsive

nearest-neighbor sites. The latter thus corresponds to a true order-disorder

transiti on, wi th a highe r transition temperature, as shown in Fig. 3. 

~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~ - fl4
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Since the dissolution and order-disorder transition temperatures are

respectively a measure of the attractive interaction leading to island

formation and the repulsive interaction preventing close packing , it now

becomes possible to determine these interactions separately by first fitting

the l ow-coverage transition and then using the resulting attractive interaction

to fit the saturation - coverage transition and obtain the repulsive interaction .

Because of the overlayer s,ymetry, one assumption is still necessary, i.e.

that the attractive interactions - 6a and 
- c2b (see Fig. 1) are equai .

(5t 6)

To model the low-coverage transition , we consider the dissolution of

Islands consisting of an r-sublattice on which all sites are occupied and

an s-sublattice on which all sites are empty(8). As the temperature increases,

the total number of atoms in the island , and thus participating in the diffraction ,

changes. Hence this is a problem in the grand canonical ensemble , and the

lattice gas model developed by Lee and ~~~~~ gives a satisfactory description

of the system. The present phase transition then is the two~dimensional analog

of the condensation problem , to which the Lee and Yang model (9) has been

successfully applied (~
0t 11) . Defining b

n1n2 
= 1 if an r-sublattice site in the

island is occupied , and b = 0 if an r-sublattice site Is empty, or forn1 n2
any site in the sea, correspondence can be made to the ferromagnetic model

for the spin system in zero external magnetic field~~
0
~ by setting

= 2b - 1 = 1 if an r-sublattice is occupied (1)n1 2 n1 2 = -l if an r-sublattice is empty

and

~ = 

~ 2b (2) 

-W~
_
~~’-~~;. ~~~~ -
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where n1, n2 are integers to indicate lattice positions , is the spin

operator for site (n1n2) and -J is the usual nearest-neighbor attractive spin-

spin interaction energy in the Ising model . Then

b , ,> = 1/4 [<a a , ,> + <a > + <a , ,> + 1) (3)n1n2 n1n2 n1n2 n1n2 n1n2 n1n2
Is the pair correlation function with <a n ~ ‘n ’> the usual spin—spinn1 2 n1 2
correlation function and <an n > the average magnetization in the spin system.

1 2
As is wel l known , the angular distribution of intensity in any diffraction

experiment is a measure of the pair correlation function (12), the two being

related by a Fourier transform. In our case the LEED superlattice reflections

are a result of the new periodicity introduced by the ordered regions of 0 atoms.

Hence the angular distribution of intensity in these beams is a measure of

the overlayer pair correlation function . Evaluating this at the diffraction

maximum gives for the maximum LEED intensity scattered by the overlayer

A
~ 

Ac
I (I) = ~ <b (T) b , , (I)> f1f, , (4)max , , n1n2 n1n2 ,n1n2 n1n2

where the f’s are structure factors that are functions of the adsorbed layer

Island size and take i nto account the effects of boundaries on the diffracted

Intensity , and Ac Is the coherence area of the instrument.

We have calculated the correlation functions of Eq. (3) for different

Ca 
= C2b, have evalua ted Imax(T) through Eq. (4), and then compared with

experimental Imax(I) curves. A typical fit is shown in Fig. 2a. The detailed

shape of the model intensity decay with temperature depends both on the

correlation functions and the f1
1 s of Eq. (4), but C

a 
does not. For arbit rary

_:. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~
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finite lattice size, the correlation functions are very complicated and no

analyti c forms are known (13). We have estimated these functions using the

Onsager sol utlons~~~ for an infinite two-dimensional lattice. Details of

this are presented elsewhere(15). The f1
1 s in Eq. (4) are the most important

quantity in determining the shape of Imax (T)~ 
An experimentally determined (6)

.~.35A dia mean island size was used to fit the curves. Fits to the shape of

Imax(T) with assumed 50% greater or lesser island sizes were much poorer.

The interaction energy C~ was determined from the Onsager relation
0
~~

2 E  2 E 2sinh k T sinh k T = 1 , (5)
B t  B t

where here E1 E2=l/4 Ca. A fit to the experimental transition temperature of

460°K gives Ca=C2b =0.069 eV/atom . As expected from Eq. (5) the determined

value of L
a 

is a quite sensitive function of It.

This va lue for the attractive interaction can now be used to analyze

the second phase transition , for the saturation p(2x1) coverage, T~ = 7l8°K.

No further assumptions are necessary to extract the repulsive interaction

that prevents the formation of a close packed structure. However, for

this phase transition , a different model is required than for the dissolution

transition , because the number of atoms participating in the diffraction

j3 now constant. The model we use to describe it Is a generalization of

:~ 
a model (2) considering i sotropic n.-n. interactions only. In our case

anisotropic n.-n. interactions 
~
C
a 

and +Cb are required . This is equivalent

to a ferromagnetic system in zero magnetic field with attractive n. -n.

interactions and 
~~ 

if the following correspondence is made :

ha . j
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-4J~ ‘+ -c~ . (6)

With this generalization , we use the mode l of Ref. 2 to calculate

again the correlation functions and Imax(T)~ 
the maximum intensity of the

superlattice reflection as a function of 1, in similar fashion as we did

earlier for the dissolution phase transition. We fit the experimental

Imax (T) curves for the saturation p(2xl ) coverage by calculating correlation

functions for different 6b using C
a from our earlier results. As before the

transition temperature Is defined through Eq. (5). This gives Lb = 0.15

eV/atom . This value lies between that obtained by a more approximate model (2)

and that obtained by an assumed interaction strength in a Monte-Carlo

caicuiation (5~
l6).

It seems evident that dissolution transitions should be observable for

other island-forming adsorbates. Since the fit of the above models to Tt
does not depend critically on instrument response or island size , it should

be straightforward to extract adatom interaction energies for such adsorbates .
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FIGURE CAPTIONS

Figure 1 . Structure model of p(2 x 1) island on a bcc (110) substrate .

X ’ s indicate sites occupied by 0 atoms , labeled the r-sub latt ice

in the text. Filled circl es indicate unoccupied sites . Within

an island , these are termed the s-sublattice. E , represent

interactions between sites as indicated by the unit vectors.

Figure 2. Temperature dependence of the (1/2 1/2) super lattice refl ection

at high and low coverage and comparison to model calculation .

a) low coverage 0 = 0.25;

b) saturation p(2 x 1) coverage 0 = 0.53. Note the differ~nt

transition temperatures and shapes of the curves .

Figure 3. Experimental transition temperature vs. coverage. 0 = 0.5

corresponds to saturation coverage for the p(? x 1) structure .
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